Hypergeometric Probability

Hypergeometric

Probability

What is **Hypergeometric Probability** ?

It is a method to compute probabilities when the selection is done from two different groups with following criteria:

- Each group contains different items.
- We select items without replacement.
- Order of arrangements does not matter.

If these requirements are satisfied, then organize the following chart

	Group 1	Group 2	Total
Total Objects	<i>n</i> 1	<i>n</i> ₂	$n_1 + n_2$
Selected Objects	<i>r</i> ₁	<i>r</i> ₂	$r_1 + r_2$

Then

$$\mathsf{P}(\mathsf{r}_1\&\mathsf{r}_2) = \frac{{}_{\mathsf{n}_1}\mathsf{C}_{\mathsf{r}_1}\cdot{}_{\mathsf{n}_2}\mathsf{C}_{\mathsf{r}_2}}{{}_{(\mathsf{n}_1+\mathsf{n}_2)}\mathsf{C}_{(\mathsf{r}_1+\mathsf{r}_2)}}$$

Hypergeometric Probability

Example:

In a recent city election, all registered voters were supposed to vote for 5 city counsel members. There were 14 candidates, 5 females and 9 males. What is the probability that 3 females and 2 males were selected?

Solution:

We first make our chart,

	Females	Males	Total
Total Objects	5	9	14
Selected Objects	3	2	5

$$P(3F\&2M) = \frac{{}_{5}C_{3} \cdot {}_{9}C_{2}}{{}_{14}C_{5}} = \frac{180}{1001}$$

In a city sponsored lottery game, you must select 4 numbers in any order from a list of numbers ranging from 1 to 20. The fundraisers draw 4 numbers randomly as winning numbers. What is the probability that you have all 4 winning numbers?

Solution:	
We first make our chart,	

	Winning Numbers	Losing Numbers	Total
Total Objects	4	16	20
Selected Objects	4	0	4

$$P(4W\&0L) = \frac{_4C_4 \cdot _{16}C_0}{_{20}C_4} = \frac{1}{_{4845}}$$

A box contains 6 red balls and 14 black balls. Suppose you are blindfolded and randomly select 3 different balls. What is the probability that you have selected 3 red balls?

Solution:

We first make our chart,

	Red Balls	Black Balls	Total
Total Objects	6	14	20
Selected Objects	3	0	3

$$P(3R\&0B) = \frac{{}_{6}C_{3} \cdot {}_{14}C_{0}}{{}_{20}C_{3}} = \frac{1}{57}$$

A box contains 6 red balls and 14 black balls. Suppose you are blindfolded and randomly select 3 different balls. What is the probability that you have selected 3 black balls?

Solution:

We first make our chart,

	Red Balls	Black Balls	Total
Total Objects	6	14	20
Selected Objects	0	3	3

$$P(0R\&3B) = \frac{{}_{6}C_{0} \cdot {}_{14}C_{3}}{{}_{20}C_{3}} = \frac{91}{285}$$

Elementary Statistics

Hypergeometric Probability

Example:

In California Super Lotto, we must choose 5 numbers from 1 to 47 for the winning numbers, and one number from 1 to 27 for the winning mega number, see the image below.

What is the probability of having all 5 winning numbers and have the winning mega number as well?

Solution:

Since this procedure takes place without replacement and order does not matter, 5 winning numbers are chosen from a list of 47 numbers, and the winning mega number is chosen from a list of 27 numbers, We first make our chart,

	47 Regular Numbers		27 Mega Numbers	
	W Number L Number		W Mega	L Mega
Total	5	42	1	26
Selected	5	0	1	0

Now, let's compute the total number of ways that this can be done

$$_{47}C_5 \cdot _{27}C_1 = 1533939 \cdot 27$$

= 41,416,353 different ways

Solution Continued:

Now for our desired event of selecting 5 winning numbers and the winning mega number, we get

$${}_{5}C_{5} \cdot {}_{42}C_{0} \cdot {}_{1}C_{1} \cdot {}_{26}C_{0} = 1 \cdot 1 \cdot 1 \cdot 1$$

= 1 way

And now we are ready to find the probability for our desired event, $\mbox{Probability(5W, 0L, 1 WM)} = \frac{1}{41416353}$

Example:

Consider California Super Lotto, what is the probability of having exactly 3 winning numbers and a losing mega number?

Solution:

With exactly 3 winning numbers, there is also 2 losing numbers to be included as well, along with a losing mega number, We first make our chart,

	47 Regular Numbers		27 Mega Numbers	
	W Number L Number		W Mega	L Mega
Total	5	42	1	26
Selected	3	2	0	1

Now for the number of ways for our desired event to occur, we get

 ${}_{5}C_{3} \cdot {}_{42}C_{2} \cdot {}_{1}C_{0} \cdot {}_{26}C_{1} = 10 \cdot 861 \cdot 1 \cdot 26$ = 223860 ways

And now we are ready to find the probability for our desired event, Probability(3W, 2L, 1 LM) = $\frac{223860}{41416353} = \frac{74620}{13805451}$

A coin jar contains 3 quarters, 5 dimes, and 12 nickels. Assume a blindfolded person grabs 3 coins from this jar, what is the probability that this person has collected 40 cents?

Solution:

The only way to get a total of 40 cents while drawing 3 coins is to have one of each type of coin, now We can make our chart,

	Quarter	Dime	Nickel	Total
Total	3	5	12	20
Selected	1	1	1	3

Now, let's compute the total number of ways that this can be done

$$_{20}C_3 = 1140$$
 different ways

Solution Continued:

Now for the number of ways for our desired event to occur, we get

$${}_{3}C_{1} \cdot {}_{5}C_{1} \cdot {}_{12}C_{1} = 3 \cdot 5 \cdot 12$$

= 180 different ways

And now we are ready to find the probability for our desired event,

Probability(40 cents) = Probability(1Q, 1D, 1N)
=
$$\frac{180}{1140}$$

= $\frac{3}{19}$